Skip to Content
logologo
AI Incident Database
Open TwitterOpen RSS FeedOpen FacebookOpen LinkedInOpen GitHub
Open Menu
発見する
投稿する
  • ようこそAIIDへ
  • インシデントを発見
  • 空間ビュー
  • テーブル表示
  • リスト表示
  • 組織
  • 分類法
  • インシデントレポートを投稿
  • 投稿ランキング
  • ブログ
  • AIニュースダイジェスト
  • リスクチェックリスト
  • おまかせ表示
  • サインアップ
閉じる
発見する
投稿する
  • ようこそAIIDへ
  • インシデントを発見
  • 空間ビュー
  • テーブル表示
  • リスト表示
  • 組織
  • 分類法
  • インシデントレポートを投稿
  • 投稿ランキング
  • ブログ
  • AIニュースダイジェスト
  • リスクチェックリスト
  • おまかせ表示
  • サインアップ
閉じる

インシデント 95: Job Screening Service Halts Facial Analysis of Applicants

概要: In January 2021, HireVue removed the controversial AI expression tracking tool from its virtual job interview software.

ツール

新しいレポート新しいレポート新しいレスポンス新しいレスポンス発見する発見する履歴を表示履歴を表示

組織

すべての組織を表示
推定: HireVueが開発し提供したAIシステムで、job applicants using HireVue と HireVue customersに影響を与えた

インシデントのステータス

インシデントID
95
レポート数
4
インシデント発生日
2019-11-06
エディタ
Sean McGregor, Khoa Lam
Applied Taxonomies
CSETv0, CSETv1, GMF, MIT

CSETv1 分類法のクラス

分類法の詳細

Incident Number

The number of the incident in the AI Incident Database.
 

95

AI Tangible Harm Level Notes

Notes about the AI tangible harm level assessment
 

The merit in the AI system's assessment of candidate performance is arguable, and therefore flawed scores likely held back qualified candidates from employment opportunities.

Special Interest Intangible Harm

An assessment of whether a special interest intangible harm occurred. This assessment does not consider the context of the intangible harm, if an AI was involved, or if there is characterizable class or subgroup of harmed entities. It is also not assessing if an intangible harm occurred. It is only asking if a special interest intangible harm occurred.
 

yes

Date of Incident Year

The year in which the incident occurred. If there are multiple harms or occurrences of the incident, list the earliest. If a precise date is unavailable, but the available sources provide a basis for estimating the year, estimate. Otherwise, leave blank. Enter in the format of YYYY
 

2019

CSETv0 分類法のクラス

分類法の詳細

Problem Nature

Indicates which, if any, of the following types of AI failure describe the incident: "Specification," i.e. the system's behavior did not align with the true intentions of its designer, operator, etc; "Robustness," i.e. the system operated unsafely because of features or changes in its environment, or in the inputs the system received; "Assurance," i.e. the system could not be adequately monitored or controlled during operation.
 

Specification

Physical System

Where relevant, indicates whether the AI system(s) was embedded into or tightly associated with specific types of hardware.
 

Software only

Level of Autonomy

The degree to which the AI system(s) functions independently from human intervention. "High" means there is no human involved in the system action execution; "Medium" means the system generates a decision and a human oversees the resulting action; "low" means the system generates decision-support output and a human makes a decision and executes an action.
 

Medium

Nature of End User

"Expert" if users with special training or technical expertise were the ones meant to benefit from the AI system(s)’ operation; "Amateur" if the AI systems were primarily meant to benefit the general public or untrained users.
 

Amateur

Public Sector Deployment

"Yes" if the AI system(s) involved in the accident were being used by the public sector or for the administration of public goods (for example, public transportation). "No" if the system(s) were being used in the private sector or for commercial purposes (for example, a ride-sharing company), on the other.
 

No

Data Inputs

A brief description of the data that the AI system(s) used or were trained on.
 

recorded video and audio

MIT 分類法のクラス

Machine-Classified
分類法の詳細

Risk Subdomain

A further 23 subdomains create an accessible and understandable classification of hazards and harms associated with AI
 

1.1. Unfair discrimination and misrepresentation

Risk Domain

The Domain Taxonomy of AI Risks classifies risks into seven AI risk domains: (1) Discrimination & toxicity, (2) Privacy & security, (3) Misinformation, (4) Malicious actors & misuse, (5) Human-computer interaction, (6) Socioeconomic & environmental harms, and (7) AI system safety, failures & limitations.
 
  1. Discrimination and Toxicity

Entity

Which, if any, entity is presented as the main cause of the risk
 

AI

Timing

The stage in the AI lifecycle at which the risk is presented as occurring
 

Post-deployment

Intent

Whether the risk is presented as occurring as an expected or unexpected outcome from pursuing a goal
 

Intentional

インシデントレポート

レポートタイムライン

+3
Complaint and Request for Investigation, Injunction, and Other Relief
Job Screening Service Halts Facial Analysis of Applicants
Complaint and Request for Investigation, Injunction, and Other Relief

Complaint and Request for Investigation, Injunction, and Other Relief

context-cdn.washingtonpost.com

A face-scanning algorithm increasingly decides whether you deserve the job

A face-scanning algorithm increasingly decides whether you deserve the job

washingtonpost.com

Rights group files federal complaint against AI-hiring firm HireVue, citing ‘unfair and deceptive’ practices

Rights group files federal complaint against AI-hiring firm HireVue, citing ‘unfair and deceptive’ practices

washingtonpost.com

Job Screening Service Halts Facial Analysis of Applicants

Job Screening Service Halts Facial Analysis of Applicants

wired.com

Complaint and Request for Investigation, Injunction, and Other Relief
context-cdn.washingtonpost.com · 2019

I. Summary

This complaint concerns a company that purports to evaluate a job applicant’s qualifications based upon their appearance by means of an opaque, proprietary algorithm. HireVue, a firm located in Utah, provides theses “assessments”…

A face-scanning algorithm increasingly decides whether you deserve the job
washingtonpost.com · 2019

An artificial intelligence hiring system has become a powerful gatekeeper for some of America’s most prominent employers, reshaping how companies assess their workforce — and how prospective employees prove their worth.

Designed by the recr…

Rights group files federal complaint against AI-hiring firm HireVue, citing ‘unfair and deceptive’ practices
washingtonpost.com · 2019

A prominent rights group is urging the Federal Trade Commission to take on the recruiting-technology company HireVue, arguing that the firm has turned to unfair and deceptive trade practices in its use of face-scanning technology to assess …

Job Screening Service Halts Facial Analysis of Applicants
wired.com · 2021

But it’s still using intonation and behavior to assist with hiring decisions.

Job hunters may now need to impress not just prospective bosses but artificial intelligence algorithms too—as employers screen candidates by having them answer in…

バリアント

「バリアント」は既存のAIインシデントと同じ原因要素を共有し、同様な被害を引き起こし、同じ知的システムを含んだインシデントです。バリアントは完全に独立したインシデントとしてインデックスするのではなく、データベースに最初に投稿された同様なインシデントの元にインシデントのバリエーションとして一覧します。インシデントデータベースの他の投稿タイプとは違い、バリアントではインシデントデータベース以外の根拠のレポートは要求されません。詳細についてはこの研究論文を参照してください

よく似たインシデント

テキスト類似度による

Did our AI mess up? Flag the unrelated incidents

Ever AI Reportedly Deceived Customers about FRT Use in App

Millions of people uploaded photos to the Ever app. Then the company used them to develop facial recognition tools.

Apr 2019 · 7 レポート
Amazon Flex Drivers Allegedly Fired via Automated Employee Evaluations

War veteran fired from Amazon for automated email with no chance to defend himself

Sep 2015 · 5 レポート
Research Prototype AI, Delphi, Reportedly Gave Racially Biased Answers on Ethics

Scientists Built an AI to Give Ethical Advice, But It Turned Out Super Racist

Oct 2021 · 3 レポート
前のインシデント次のインシデント

よく似たインシデント

テキスト類似度による

Did our AI mess up? Flag the unrelated incidents

Ever AI Reportedly Deceived Customers about FRT Use in App

Millions of people uploaded photos to the Ever app. Then the company used them to develop facial recognition tools.

Apr 2019 · 7 レポート
Amazon Flex Drivers Allegedly Fired via Automated Employee Evaluations

War veteran fired from Amazon for automated email with no chance to defend himself

Sep 2015 · 5 レポート
Research Prototype AI, Delphi, Reportedly Gave Racially Biased Answers on Ethics

Scientists Built an AI to Give Ethical Advice, But It Turned Out Super Racist

Oct 2021 · 3 レポート

リサーチ

  • “AIインシデント”の定義
  • “AIインシデントレスポンス”の定義
  • データベースのロードマップ
  • 関連研究
  • 全データベースのダウンロード

プロジェクトとコミュニティ

  • AIIDについて
  • コンタクトとフォロー
  • アプリと要約
  • エディタのためのガイド

インシデント

  • 全インシデントの一覧
  • フラグの立ったインシデント
  • 登録待ち一覧
  • クラスごとの表示
  • 分類法

2023 - AI Incident Database

  • 利用規約
  • プライバシーポリシー
  • Open twitterOpen githubOpen rssOpen facebookOpen linkedin
  • 8b8f151