Skip to Content
logologo
AI Incident Database
Open TwitterOpen RSS FeedOpen FacebookOpen LinkedInOpen GitHub
Open Menu
発見する
投稿する
  • ようこそAIIDへ
  • インシデントを発見
  • 空間ビュー
  • テーブル表示
  • リスト表示
  • 組織
  • 分類法
  • インシデントレポートを投稿
  • 投稿ランキング
  • ブログ
  • AIニュースダイジェスト
  • リスクチェックリスト
  • おまかせ表示
  • サインアップ
閉じる
発見する
投稿する
  • ようこそAIIDへ
  • インシデントを発見
  • 空間ビュー
  • テーブル表示
  • リスト表示
  • 組織
  • 分類法
  • インシデントレポートを投稿
  • 投稿ランキング
  • ブログ
  • AIニュースダイジェスト
  • リスクチェックリスト
  • おまかせ表示
  • サインアップ
閉じる

インシデント 7: Wikipedia Vandalism Prevention Bot Loop

概要: Wikipedia bots meant to remove vandalism clash with each other and form feedback loops of repetitve undoing of the other bot's edits.

ツール

新しいレポート新しいレポート新しいレスポンス新しいレスポンス発見する発見する履歴を表示履歴を表示

組織

すべての組織を表示
推定: Wikipediaが開発し提供したAIシステムで、Wikimedia Foundation , Wikipedia Editors と Wikipedia Usersに影響を与えた

インシデントのステータス

インシデントID
7
レポート数
6
インシデント発生日
2017-02-24
エディタ
Sean McGregor
Applied Taxonomies
CSETv0, CSETv1, GMF, MIT

CSETv1 分類法のクラス

分類法の詳細

Incident Number

The number of the incident in the AI Incident Database.
 

7

AI Tangible Harm Level Notes

Notes about the AI tangible harm level assessment
 

It is unclear if any of the Wikipedia bots under study relies on machine learning technology, but it is unlikely. Nobody experienced any harm.

Special Interest Intangible Harm

An assessment of whether a special interest intangible harm occurred. This assessment does not consider the context of the intangible harm, if an AI was involved, or if there is characterizable class or subgroup of harmed entities. It is also not assessing if an intangible harm occurred. It is only asking if a special interest intangible harm occurred.
 

no

Date of Incident Year

The year in which the incident occurred. If there are multiple harms or occurrences of the incident, list the earliest. If a precise date is unavailable, but the available sources provide a basis for estimating the year, estimate. Otherwise, leave blank. Enter in the format of YYYY
 

2001

CSETv0 分類法のクラス

分類法の詳細

Problem Nature

Indicates which, if any, of the following types of AI failure describe the incident: "Specification," i.e. the system's behavior did not align with the true intentions of its designer, operator, etc; "Robustness," i.e. the system operated unsafely because of features or changes in its environment, or in the inputs the system received; "Assurance," i.e. the system could not be adequately monitored or controlled during operation.
 

Specification, Robustness, Assurance

Physical System

Where relevant, indicates whether the AI system(s) was embedded into or tightly associated with specific types of hardware.
 

Software only

Level of Autonomy

The degree to which the AI system(s) functions independently from human intervention. "High" means there is no human involved in the system action execution; "Medium" means the system generates a decision and a human oversees the resulting action; "low" means the system generates decision-support output and a human makes a decision and executes an action.
 

High

Nature of End User

"Expert" if users with special training or technical expertise were the ones meant to benefit from the AI system(s)’ operation; "Amateur" if the AI systems were primarily meant to benefit the general public or untrained users.
 

Amateur

Public Sector Deployment

"Yes" if the AI system(s) involved in the accident were being used by the public sector or for the administration of public goods (for example, public transportation). "No" if the system(s) were being used in the private sector or for commercial purposes (for example, a ride-sharing company), on the other.
 

No

Data Inputs

A brief description of the data that the AI system(s) used or were trained on.
 

Wikipedia articles, edits from other bots

MIT 分類法のクラス

Machine-Classified
分類法の詳細

Risk Subdomain

A further 23 subdomains create an accessible and understandable classification of hazards and harms associated with AI
 

7.3. Lack of capability or robustness

Risk Domain

The Domain Taxonomy of AI Risks classifies risks into seven AI risk domains: (1) Discrimination & toxicity, (2) Privacy & security, (3) Misinformation, (4) Malicious actors & misuse, (5) Human-computer interaction, (6) Socioeconomic & environmental harms, and (7) AI system safety, failures & limitations.
 
  1. AI system safety, failures, and limitations

Entity

Which, if any, entity is presented as the main cause of the risk
 

AI

Timing

The stage in the AI lifecycle at which the risk is presented as occurring
 

Post-deployment

Intent

Whether the risk is presented as occurring as an expected or unexpected outcome from pursuing a goal
 

Unintentional

インシデントレポート

レポートタイムライン

+2
Study reveals bot-on-bot editing wars raging on Wikipedia's pages
Automated Wikipedia Edit-Bots Have Been Fighting Each Other For A Decade+1
Wiki Bots That Feud for Years Highlight the Troubled Future of AI
Danger, danger! 10 alarming examples of AI gone wild
Study reveals bot-on-bot editing wars raging on Wikipedia's pages

Study reveals bot-on-bot editing wars raging on Wikipedia's pages

theguardian.com

People built AI bots to improve Wikipedia. Then they started squabbling in petty edit wars, sigh

People built AI bots to improve Wikipedia. Then they started squabbling in petty edit wars, sigh

theregister.co.uk

Automated Wikipedia Edit-Bots Have Been Fighting Each Other For A Decade

Automated Wikipedia Edit-Bots Have Been Fighting Each Other For A Decade

huffingtonpost.com.au

Wiki Bots That Feud for Years Highlight the Troubled Future of AI

Wiki Bots That Feud for Years Highlight the Troubled Future of AI

seeker.com

Internet Bots Fight Each Other Because They're All Too Human

Internet Bots Fight Each Other Because They're All Too Human

wired.com

Danger, danger! 10 alarming examples of AI gone wild

Danger, danger! 10 alarming examples of AI gone wild

infoworld.com

Study reveals bot-on-bot editing wars raging on Wikipedia's pages
theguardian.com · 2017

For many it is no more than the first port of call when a niggling question raises its head. Found on its pages are answers to mysteries from the fate of male anglerfish, the joys of dorodango, and the improbable death of Aeschylus.

But ben…

People built AI bots to improve Wikipedia. Then they started squabbling in petty edit wars, sigh
theregister.co.uk · 2017

Analysis An investigation into Wikipedia bots has confirmed the automated editing software can be just as pedantic and petty as humans are – often engaging in online spats that can continue for years.

What's interesting is that bots behave …

Automated Wikipedia Edit-Bots Have Been Fighting Each Other For A Decade
huffingtonpost.com.au · 2017

It turns out Wikipedia's automated edit 'bots' have been waging a cyber-war between each other for over a decade by changing each other's corrections -- and it's getting worse.

Researchers at the University of Oxford in the United Kingdom r…

Wiki Bots That Feud for Years Highlight the Troubled Future of AI
seeker.com · 2017

Wiki Bots That Feud for Years Highlight the Troubled Future of AI

The behavior of bots is often unpredictable and sometimes leads them to produce errors over and over again in a potentially infinite feedback loop.

Internet Bots Fight Each Other Because They're All Too Human
wired.com · 2017

Getty Images

No one saw the crisis coming: a coordinated vandalistic effort to insert Squidward references into articles totally unrelated to Squidward. In 2006, Wikipedia was really starting to get going, and really couldn’t afford to have…

Danger, danger! 10 alarming examples of AI gone wild
infoworld.com · 2017

Science fiction is lousy with tales of artificial intelligence run amok. There's HAL 9000, of course, and the nefarious Skynet system from the "Terminator" films. Last year, the sinister AI Ultron came this close to defeating the Avengers, …

バリアント

「バリアント」は既存のAIインシデントと同じ原因要素を共有し、同様な被害を引き起こし、同じ知的システムを含んだインシデントです。バリアントは完全に独立したインシデントとしてインデックスするのではなく、データベースに最初に投稿された同様なインシデントの元にインシデントのバリエーションとして一覧します。インシデントデータベースの他の投稿タイプとは違い、バリアントではインシデントデータベース以外の根拠のレポートは要求されません。詳細についてはこの研究論文を参照してください

よく似たインシデント

テキスト類似度による

Did our AI mess up? Flag the unrelated incidents

All Image Captions Produced are Violent

Are you scared yet? Meet Norman, the psychopathic AI

Apr 2018 · 28 レポート
AI Beauty Judge Did Not Like Dark Skin

A beauty contest was judged by AI and the robots didn't like dark skin

Sep 2016 · 10 レポート
Amazon Censors Gay Books

Amazon Censors Gay Books

May 2008 · 24 レポート
前のインシデント次のインシデント

よく似たインシデント

テキスト類似度による

Did our AI mess up? Flag the unrelated incidents

All Image Captions Produced are Violent

Are you scared yet? Meet Norman, the psychopathic AI

Apr 2018 · 28 レポート
AI Beauty Judge Did Not Like Dark Skin

A beauty contest was judged by AI and the robots didn't like dark skin

Sep 2016 · 10 レポート
Amazon Censors Gay Books

Amazon Censors Gay Books

May 2008 · 24 レポート

リサーチ

  • “AIインシデント”の定義
  • “AIインシデントレスポンス”の定義
  • データベースのロードマップ
  • 関連研究
  • 全データベースのダウンロード

プロジェクトとコミュニティ

  • AIIDについて
  • コンタクトとフォロー
  • アプリと要約
  • エディタのためのガイド

インシデント

  • 全インシデントの一覧
  • フラグの立ったインシデント
  • 登録待ち一覧
  • クラスごとの表示
  • 分類法

2023 - AI Incident Database

  • 利用規約
  • プライバシーポリシー
  • Open twitterOpen githubOpen rssOpen facebookOpen linkedin
  • 8b8f151