Skip to Content
logologo
AI Incident Database
Open TwitterOpen RSS FeedOpen FacebookOpen LinkedInOpen GitHub
Open Menu
発見する
投稿する
  • ようこそAIIDへ
  • インシデントを発見
  • 空間ビュー
  • テーブル表示
  • リスト表示
  • 組織
  • 分類法
  • インシデントレポートを投稿
  • 投稿ランキング
  • ブログ
  • AIニュースダイジェスト
  • リスクチェックリスト
  • おまかせ表示
  • サインアップ
閉じる
発見する
投稿する
  • ようこそAIIDへ
  • インシデントを発見
  • 空間ビュー
  • テーブル表示
  • リスト表示
  • 組織
  • 分類法
  • インシデントレポートを投稿
  • 投稿ランキング
  • ブログ
  • AIニュースダイジェスト
  • リスクチェックリスト
  • おまかせ表示
  • サインアップ
閉じる

インシデント 288: New Jersey Police Wrongful Arrested Innocent Black Man via FRT

概要: Woodbridge Police Department falsely arrested an innocent Black man following a misidentification by their facial recognition software, who was jailed for more than a week and paid thousands of dollar for his defense.

ツール

新しいレポート新しいレポート新しいレスポンス新しいレスポンス発見する発見する履歴を表示履歴を表示

組織

すべての組織を表示
Alleged: unknown developed an AI system deployed by Woodbridge Police Department, which harmed Nijeer Parks.

インシデントのステータス

インシデントID
288
レポート数
4
インシデント発生日
2019-01-30
エディタ
Khoa Lam
Applied Taxonomies
GMF, MIT

MIT 分類法のクラス

Machine-Classified
分類法の詳細

Risk Subdomain

A further 23 subdomains create an accessible and understandable classification of hazards and harms associated with AI
 

1.1. Unfair discrimination and misrepresentation

Risk Domain

The Domain Taxonomy of AI Risks classifies risks into seven AI risk domains: (1) Discrimination & toxicity, (2) Privacy & security, (3) Misinformation, (4) Malicious actors & misuse, (5) Human-computer interaction, (6) Socioeconomic & environmental harms, and (7) AI system safety, failures & limitations.
 
  1. Discrimination and Toxicity

Entity

Which, if any, entity is presented as the main cause of the risk
 

AI

Timing

The stage in the AI lifecycle at which the risk is presented as occurring
 

Post-deployment

Intent

Whether the risk is presented as occurring as an expected or unexpected outcome from pursuing a goal
 

Unintentional

インシデントレポート

レポートタイムライン

Incident Occurrence+3
He spent 10 days in jail after facial recognition software led to the arrest of the wrong man, lawsuit says
He spent 10 days in jail after facial recognition software led to the arrest of the wrong man, lawsuit says

He spent 10 days in jail after facial recognition software led to the arrest of the wrong man, lawsuit says

nj.com

Another Arrest, and Jail Time, Due to a Bad Facial Recognition Match

Another Arrest, and Jail Time, Due to a Bad Facial Recognition Match

nytimes.com

Black man in New Jersey misidentified by facial recognition tech and falsely jailed, lawsuit claims

Black man in New Jersey misidentified by facial recognition tech and falsely jailed, lawsuit claims

nbcnews.com

Government Users of Facial Recognition Software Sued by Plaintiff Alleging Wrongful Imprisonment Over Case of Mistaken Identity

Government Users of Facial Recognition Software Sued by Plaintiff Alleging Wrongful Imprisonment Over Case of Mistaken Identity

natlawreview.com

He spent 10 days in jail after facial recognition software led to the arrest of the wrong man, lawsuit says
nj.com · 2020

Editor’s note: This article has been updated to include a statement from the New Jersey Attorney General’s Office.

When Nijeer Parks walked out of a New Jersey prison in 2016, he returned to his family in Paterson and told them he was done …

Another Arrest, and Jail Time, Due to a Bad Facial Recognition Match
nytimes.com · 2020

In February 2019, Nijeer Parks was accused of shoplifting candy and trying to hit a police officer with a car at a Hampton Inn in Woodbridge, N.J. The police had identified him using facial recognition software, even though he was 30 miles …

Black man in New Jersey misidentified by facial recognition tech and falsely jailed, lawsuit claims
nbcnews.com · 2020

A New Jersey man sued police and prosecutors, claiming he was wrongly arrested and jailed after facial recognition software mistakenly linked him to a hotel theft.

Nijeer Parks, 33, a Black man from Paterson, said his grandmother told him o…

Government Users of Facial Recognition Software Sued by Plaintiff Alleging Wrongful Imprisonment Over Case of Mistaken Identity
natlawreview.com · 2021

It has become commonplace for government agencies and law enforcement, particularly in large metropolitan areas, to use facial recognition software. These entities are a major client base of Clearview AI (“Clearview”), as we disclosed last …

バリアント

「バリアント」は既存のAIインシデントと同じ原因要素を共有し、同様な被害を引き起こし、同じ知的システムを含んだインシデントです。バリアントは完全に独立したインシデントとしてインデックスするのではなく、データベースに最初に投稿された同様なインシデントの元にインシデントのバリエーションとして一覧します。インシデントデータベースの他の投稿タイプとは違い、バリアントではインシデントデータベース以外の根拠のレポートは要求されません。詳細についてはこの研究論文を参照してください

よく似たインシデント

テキスト類似度による

Did our AI mess up? Flag the unrelated incidents

Detroit Police Wrongfully Arrested Black Man Due To Faulty FRT

Wrongfully Accused by an Algorithm

Jan 2020 · 11 レポート
Predictive Policing Biases of PredPol

Policing the Future

Nov 2015 · 17 レポート
Northpointe Risk Models

Machine Bias - ProPublica

May 2016 · 15 レポート
前のインシデント次のインシデント

よく似たインシデント

テキスト類似度による

Did our AI mess up? Flag the unrelated incidents

Detroit Police Wrongfully Arrested Black Man Due To Faulty FRT

Wrongfully Accused by an Algorithm

Jan 2020 · 11 レポート
Predictive Policing Biases of PredPol

Policing the Future

Nov 2015 · 17 レポート
Northpointe Risk Models

Machine Bias - ProPublica

May 2016 · 15 レポート

リサーチ

  • “AIインシデント”の定義
  • “AIインシデントレスポンス”の定義
  • データベースのロードマップ
  • 関連研究
  • 全データベースのダウンロード

プロジェクトとコミュニティ

  • AIIDについて
  • コンタクトとフォロー
  • アプリと要約
  • エディタのためのガイド

インシデント

  • 全インシデントの一覧
  • フラグの立ったインシデント
  • 登録待ち一覧
  • クラスごとの表示
  • 分類法

2023 - AI Incident Database

  • 利用規約
  • プライバシーポリシー
  • Open twitterOpen githubOpen rssOpen facebookOpen linkedin
  • 1ce4c40