Skip to Content
logologo
AI Incident Database
Open TwitterOpen RSS FeedOpen FacebookOpen LinkedInOpen GitHub
Open Menu
発見する
投稿する
  • ようこそAIIDへ
  • インシデントを発見
  • 空間ビュー
  • テーブル表示
  • リスト表示
  • 組織
  • 分類法
  • インシデントレポートを投稿
  • 投稿ランキング
  • ブログ
  • AIニュースダイジェスト
  • リスクチェックリスト
  • おまかせ表示
  • サインアップ
閉じる
発見する
投稿する
  • ようこそAIIDへ
  • インシデントを発見
  • 空間ビュー
  • テーブル表示
  • リスト表示
  • 組織
  • 分類法
  • インシデントレポートを投稿
  • 投稿ランキング
  • ブログ
  • AIニュースダイジェスト
  • リスクチェックリスト
  • おまかせ表示
  • サインアップ
閉じる

インシデント 1019: "Jewish Baby Strollers" Provided Anti-Semitic Google Images, Allegedly Resulting from Hate Speech Campaign

概要: Google's Image search for "Jewish baby strollers" showed offensive, anti-Semitic results, allegedly a result of a coordinated hate-speech campaign involving malicious actors on 4chan.

ツール

新しいレポート新しいレポート新しいレスポンス新しいレスポンス発見する発見する履歴を表示履歴を表示

組織

すべての組織を表示
推定: Googleが開発し提供したAIシステムで、Jewish people と Google Images usersに影響を与えた

インシデントのステータス

インシデントID
1019
レポート数
2
インシデント発生日
2017-08-15
エディタ
Sean McGregor, Khoa Lam
Applied Taxonomies
CSETv0, CSETv1, GMF, MIT

CSETv1 分類法のクラス

分類法の詳細

Incident Number

The number of the incident in the AI Incident Database.
 

88

Special Interest Intangible Harm

An assessment of whether a special interest intangible harm occurred. This assessment does not consider the context of the intangible harm, if an AI was involved, or if there is characterizable class or subgroup of harmed entities. It is also not assessing if an intangible harm occurred. It is only asking if a special interest intangible harm occurred.
 

yes

CSETv0 分類法のクラス

分類法の詳細

Problem Nature

Indicates which, if any, of the following types of AI failure describe the incident: "Specification," i.e. the system's behavior did not align with the true intentions of its designer, operator, etc; "Robustness," i.e. the system operated unsafely because of features or changes in its environment, or in the inputs the system received; "Assurance," i.e. the system could not be adequately monitored or controlled during operation.
 

Robustness, Assurance

Physical System

Where relevant, indicates whether the AI system(s) was embedded into or tightly associated with specific types of hardware.
 

Software only

Level of Autonomy

The degree to which the AI system(s) functions independently from human intervention. "High" means there is no human involved in the system action execution; "Medium" means the system generates a decision and a human oversees the resulting action; "low" means the system generates decision-support output and a human makes a decision and executes an action.
 

High

Nature of End User

"Expert" if users with special training or technical expertise were the ones meant to benefit from the AI system(s)’ operation; "Amateur" if the AI systems were primarily meant to benefit the general public or untrained users.
 

Amateur

Public Sector Deployment

"Yes" if the AI system(s) involved in the accident were being used by the public sector or for the administration of public goods (for example, public transportation). "No" if the system(s) were being used in the private sector or for commercial purposes (for example, a ride-sharing company), on the other.
 

No

Data Inputs

A brief description of the data that the AI system(s) used or were trained on.
 

images, tags, appended texts, user input

MIT 分類法のクラス

Machine-Classified
分類法の詳細

Risk Subdomain

A further 23 subdomains create an accessible and understandable classification of hazards and harms associated with AI
 

1.2. Exposure to toxic content

Risk Domain

The Domain Taxonomy of AI Risks classifies risks into seven AI risk domains: (1) Discrimination & toxicity, (2) Privacy & security, (3) Misinformation, (4) Malicious actors & misuse, (5) Human-computer interaction, (6) Socioeconomic & environmental harms, and (7) AI system safety, failures & limitations.
 
  1. Discrimination and Toxicity

Entity

Which, if any, entity is presented as the main cause of the risk
 

Human

Timing

The stage in the AI lifecycle at which the risk is presented as occurring
 

Post-deployment

Intent

Whether the risk is presented as occurring as an expected or unexpected outcome from pursuing a goal
 

Intentional

インシデントレポート

レポートタイムライン

Incident Occurrence+1
A Google search for ‘Jewish baby strollers’ yields anti-Semitic images. An extremist campaign may be to blame.
A Google search for ‘Jewish baby strollers’ yields anti-Semitic images. An extremist campaign may be to blame.

A Google search for ‘Jewish baby strollers’ yields anti-Semitic images. An extremist campaign may be to blame.

jta.org

Jewish Baby Stroller Image Algorithm

Jewish Baby Stroller Image Algorithm

timebulletin.com

A Google search for ‘Jewish baby strollers’ yields anti-Semitic images. An extremist campaign may be to blame.
jta.org · 2020

(JTA) — The Google results are shocking: Do an image search for “Jewish baby strollers” and you’ll see row upon row of portable ovens — an offensive allusion to the Holocaust.

Google says it’s looking into the search results and wants to im…

Jewish Baby Stroller Image Algorithm
timebulletin.com · 2020

The anti-Semitic movement has been on the rise coordinated by an online group named ‘raid’. They operate by manipulating the google image search engine results by attaching abusive images tagged with innocent keywords which in turn, shows t…

バリアント

「バリアント」は既存のAIインシデントと同じ原因要素を共有し、同様な被害を引き起こし、同じ知的システムを含んだインシデントです。バリアントは完全に独立したインシデントとしてインデックスするのではなく、データベースに最初に投稿された同様なインシデントの元にインシデントのバリエーションとして一覧します。インシデントデータベースの他の投稿タイプとは違い、バリアントではインシデントデータベース以外の根拠のレポートは要求されません。詳細についてはこの研究論文を参照してください

よく似たインシデント

テキスト類似度による

Did our AI mess up? Flag the unrelated incidents

Microsoft’s Algorithm Allegedly Selected Photo of the Wrong Mixed-Race Person Featured in a News Story

Microsoft’s AI journalists confuse mixed-race Little Mix singers

Jun 2020 · 12 レポート
Biased Google Image Results

'Black teenagers' vs. 'white teenagers': Why Google's algorithm displays racist results

Mar 2016 · 18 レポート
Chinese Tech Firms Allegedly Developed Facial Recognition to Identify People by Race, Targeting Uyghur Muslims

Surveillance group exposes disturbing Huawei patent for AI-powered Uighur detection

Jul 2018 · 2 レポート
前のインシデント

よく似たインシデント

テキスト類似度による

Did our AI mess up? Flag the unrelated incidents

Microsoft’s Algorithm Allegedly Selected Photo of the Wrong Mixed-Race Person Featured in a News Story

Microsoft’s AI journalists confuse mixed-race Little Mix singers

Jun 2020 · 12 レポート
Biased Google Image Results

'Black teenagers' vs. 'white teenagers': Why Google's algorithm displays racist results

Mar 2016 · 18 レポート
Chinese Tech Firms Allegedly Developed Facial Recognition to Identify People by Race, Targeting Uyghur Muslims

Surveillance group exposes disturbing Huawei patent for AI-powered Uighur detection

Jul 2018 · 2 レポート

リサーチ

  • “AIインシデント”の定義
  • “AIインシデントレスポンス”の定義
  • データベースのロードマップ
  • 関連研究
  • 全データベースのダウンロード

プロジェクトとコミュニティ

  • AIIDについて
  • コンタクトとフォロー
  • アプリと要約
  • エディタのためのガイド

インシデント

  • 全インシデントの一覧
  • フラグの立ったインシデント
  • 登録待ち一覧
  • クラスごとの表示
  • 分類法

2023 - AI Incident Database

  • 利用規約
  • プライバシーポリシー
  • Open twitterOpen githubOpen rssOpen facebookOpen linkedin
  • f28fa7c