Description: Rekognition's face comparison feature was shown by the ACLU to have misidentified members of congress, and particularly members of colors, as other people who have been arrested using a mugshot database built on publicly available arrest photos.
Entités
Voir toutes les entitésAlleged: Amazon developed and deployed an AI system, which harmed Rekognition users et arrested people.
Classifications de taxonomie CSETv1
Détails de la taxonomieIncident Number
The number of the incident in the AI Incident Database.
114
Special Interest Intangible Harm
An assessment of whether a special interest intangible harm occurred. This assessment does not consider the context of the intangible harm, if an AI was involved, or if there is characterizable class or subgroup of harmed entities. It is also not assessing if an intangible harm occurred. It is only asking if a special interest intangible harm occurred.
yes
Notes (AI special interest intangible harm)
If for 5.5 you select unclear or leave it blank, please provide a brief description of why.
You can also add notes if you want to provide justification for a level.
The ACLU's test demonstrated Rekognition's disproportionate inaccuracy on the faces of people of color.
Date of Incident Year
The year in which the incident occurred. If there are multiple harms or occurrences of the incident, list the earliest. If a precise date is unavailable, but the available sources provide a basis for estimating the year, estimate. Otherwise, leave blank.
Enter in the format of YYYY
2018
Date of Incident Month
The month in which the incident occurred. If there are multiple harms or occurrences of the incident, list the earliest. If a precise date is unavailable, but the available sources provide a basis for estimating the month, estimate. Otherwise, leave blank.
Enter in the format of MM
07
Estimated Date
“Yes” if the data was estimated. “No” otherwise.
No
Rapports d'incidents
Chronologie du rapport
aclu.org · 2018
- Afficher le rapport d'origine à sa source
- Voir le rapport sur l'Archive d'Internet
La technologie de surveillance faciale d'Amazon est la cible d'une opposition croissante à l'échelle nationale, et aujourd'hui, il y a 28 autres sujets de préoccupation. Lors d'un test récemment effectué par l'ACLU sur l'outil de reconnaiss…
Variantes
Une "Variante" est un incident qui partage les mêmes facteurs de causalité, produit des dommages similaires et implique les mêmes systèmes intelligents qu'un incident d'IA connu. Plutôt que d'indexer les variantes comme des incidents entièrement distincts, nous listons les variations d'incidents sous le premier incident similaire soumis à la base de données. Contrairement aux autres types de soumission à la base de données des incidents, les variantes ne sont pas tenues d'avoir des rapports en preuve externes à la base de données des incidents. En savoir plus sur le document de recherche.
Incidents similaires
Did our AI mess up? Flag the unrelated incidents
Policing the Future
· 17 rapports
Machine Bias - ProPublica
· 15 rapports
Incidents similaires
Did our AI mess up? Flag the unrelated incidents
Policing the Future
· 17 rapports
Machine Bias - ProPublica
· 15 rapports