Skip to Content
logologo
AI Incident Database
Open TwitterOpen RSS FeedOpen FacebookOpen LinkedInOpen GitHub
Open Menu
Découvrir
Envoyer
  • Bienvenue sur AIID
  • Découvrir les incidents
  • Vue spatiale
  • Vue de tableau
  • Vue de liste
  • Entités
  • Taxonomies
  • Soumettre des rapports d'incident
  • Classement des reporters
  • Blog
  • Résumé de l’Actualité sur l’IA
  • Contrôle des risques
  • Incident au hasard
  • S'inscrire
Fermer
Découvrir
Envoyer
  • Bienvenue sur AIID
  • Découvrir les incidents
  • Vue spatiale
  • Vue de tableau
  • Vue de liste
  • Entités
  • Taxonomies
  • Soumettre des rapports d'incident
  • Classement des reporters
  • Blog
  • Résumé de l’Actualité sur l’IA
  • Contrôle des risques
  • Incident au hasard
  • S'inscrire
Fermer

Incident 114: Amazon's Rekognition Falsely Matched Members of Congress to Mugshots

Description: Rekognition's face comparison feature was shown by the ACLU to have misidentified members of congress, and particularly members of colors, as other people who have been arrested using a mugshot database built on publicly available arrest photos.

Outils

Nouveau rapportNouveau rapportNouvelle RéponseNouvelle RéponseDécouvrirDécouvrirVoir l'historiqueVoir l'historique

Entités

Voir toutes les entités
Présumé : Un système d'IA développé et mis en œuvre par Amazon, a endommagé Rekognition users et arrested people.

Statistiques d'incidents

ID
114
Nombre de rapports
1
Date de l'incident
2018-07-26
Editeurs
Sean McGregor, Khoa Lam
Applied Taxonomies
CSETv1, GMF, MIT

Classifications de taxonomie CSETv1

Détails de la taxonomie

Incident Number

The number of the incident in the AI Incident Database.
 

114

Special Interest Intangible Harm

An assessment of whether a special interest intangible harm occurred. This assessment does not consider the context of the intangible harm, if an AI was involved, or if there is characterizable class or subgroup of harmed entities. It is also not assessing if an intangible harm occurred. It is only asking if a special interest intangible harm occurred.
 

yes

Notes (AI special interest intangible harm)

If for 5.5 you select unclear or leave it blank, please provide a brief description of why. You can also add notes if you want to provide justification for a level.
 

The ACLU's test demonstrated Rekognition's disproportionate inaccuracy on the faces of people of color.

Date of Incident Year

The year in which the incident occurred. If there are multiple harms or occurrences of the incident, list the earliest. If a precise date is unavailable, but the available sources provide a basis for estimating the year, estimate. Otherwise, leave blank. Enter in the format of YYYY
 

2018

Date of Incident Month

The month in which the incident occurred. If there are multiple harms or occurrences of the incident, list the earliest. If a precise date is unavailable, but the available sources provide a basis for estimating the month, estimate. Otherwise, leave blank. Enter in the format of MM
 

07

Estimated Date

“Yes” if the data was estimated. “No” otherwise.
 

No

Classifications de taxonomie MIT

Machine-Classified
Détails de la taxonomie

Risk Subdomain

A further 23 subdomains create an accessible and understandable classification of hazards and harms associated with AI
 

1.1. Unfair discrimination and misrepresentation

Risk Domain

The Domain Taxonomy of AI Risks classifies risks into seven AI risk domains: (1) Discrimination & toxicity, (2) Privacy & security, (3) Misinformation, (4) Malicious actors & misuse, (5) Human-computer interaction, (6) Socioeconomic & environmental harms, and (7) AI system safety, failures & limitations.
 
  1. Discrimination and Toxicity

Entity

Which, if any, entity is presented as the main cause of the risk
 

AI

Timing

The stage in the AI lifecycle at which the risk is presented as occurring
 

Post-deployment

Intent

Whether the risk is presented as occurring as an expected or unexpected outcome from pursuing a goal
 

Unintentional

Rapports d'incidents

Chronologie du rapport

+1
La reconnaissance faciale d'Amazon correspond à tort à 28 membres du Congrès avec des mugshots
La reconnaissance faciale d'Amazon correspond à tort à 28 membres du Congrès avec des mugshots

La reconnaissance faciale d'Amazon correspond à tort à 28 membres du Congrès avec des mugshots

aclu.org

La reconnaissance faciale d'Amazon correspond à tort à 28 membres du Congrès avec des mugshots
aclu.org · 2018
Traduit par IA

La technologie de surveillance faciale d'Amazon est la cible d'une opposition croissante à l'échelle nationale, et aujourd'hui, il y a 28 autres sujets de préoccupation. Lors d'un test récemment effectué par l'ACLU sur l'outil de reconnaiss…

Variantes

Une "Variante" est un incident qui partage les mêmes facteurs de causalité, produit des dommages similaires et implique les mêmes systèmes intelligents qu'un incident d'IA connu. Plutôt que d'indexer les variantes comme des incidents entièrement distincts, nous listons les variations d'incidents sous le premier incident similaire soumis à la base de données. Contrairement aux autres types de soumission à la base de données des incidents, les variantes ne sont pas tenues d'avoir des rapports en preuve externes à la base de données des incidents. En savoir plus sur le document de recherche.

Incidents similaires

Par similarité textuelle

Did our AI mess up? Flag the unrelated incidents

Predictive Policing Biases of PredPol

Policing the Future

Nov 2015 · 17 rapports
COMPAS Algorithm Performs Poorly in Crime Recidivism Prediction

A Popular Algorithm Is No Better at Predicting Crimes Than Random People

May 2016 · 22 rapports
Northpointe Risk Models

Machine Bias - ProPublica

May 2016 · 15 rapports
Incident précédentProchain incident

Incidents similaires

Par similarité textuelle

Did our AI mess up? Flag the unrelated incidents

Predictive Policing Biases of PredPol

Policing the Future

Nov 2015 · 17 rapports
COMPAS Algorithm Performs Poorly in Crime Recidivism Prediction

A Popular Algorithm Is No Better at Predicting Crimes Than Random People

May 2016 · 22 rapports
Northpointe Risk Models

Machine Bias - ProPublica

May 2016 · 15 rapports

Recherche

  • Définition d'un « incident d'IA »
  • Définir une « réponse aux incidents d'IA »
  • Feuille de route de la base de données
  • Travaux connexes
  • Télécharger la base de données complète

Projet et communauté

  • À propos de
  • Contacter et suivre
  • Applications et résumés
  • Guide de l'éditeur

Incidents

  • Tous les incidents sous forme de liste
  • Incidents signalés
  • File d'attente de soumission
  • Affichage des classifications
  • Taxonomies

2023 - AI Incident Database

  • Conditions d'utilisation
  • Politique de confidentialité
  • Open twitterOpen githubOpen rssOpen facebookOpen linkedin
  • 5fc5e5b