Skip to Content
logologo
AI Incident Database
Open TwitterOpen RSS FeedOpen FacebookOpen LinkedInOpen GitHub
Open Menu
Découvrir
Envoyer
  • Bienvenue sur AIID
  • Découvrir les incidents
  • Vue spatiale
  • Vue de tableau
  • Vue de liste
  • Entités
  • Taxonomies
  • Soumettre des rapports d'incident
  • Classement des reporters
  • Blog
  • Résumé de l’Actualité sur l’IA
  • Contrôle des risques
  • Incident au hasard
  • S'inscrire
Fermer
Découvrir
Envoyer
  • Bienvenue sur AIID
  • Découvrir les incidents
  • Vue spatiale
  • Vue de tableau
  • Vue de liste
  • Entités
  • Taxonomies
  • Soumettre des rapports d'incident
  • Classement des reporters
  • Blog
  • Résumé de l’Actualité sur l’IA
  • Contrôle des risques
  • Incident au hasard
  • S'inscrire
Fermer

Incident 100: How French welfare services are creating ‘robo-debt’

Description: A French welfare office using software to automatically evaluate cases incorrectly notified a woman receiving benefits that she owed €542.

Outils

Nouveau rapportNouveau rapportNouvelle RéponseNouvelle RéponseDécouvrirDécouvrirVoir l'historiqueVoir l'historique

Entités

Voir toutes les entités
Alleged: unknown developed an AI system deployed by French Welfare Offices, which harmed Lucie Inland.

Statistiques d'incidents

ID
100
Nombre de rapports
1
Date de l'incident
2021-03-17
Editeurs
Sean McGregor, Khoa Lam
Applied Taxonomies
CSETv0, CSETv1, GMF, MIT

Classifications de taxonomie CSETv1

Détails de la taxonomie

Incident Number

The number of the incident in the AI Incident Database.
 

100

AI Tangible Harm Level Notes

Notes about the AI tangible harm level assessment
 

No financial harm because the money was given back

AI was not involved in the robo-debt algorithms. Statistics and risk categories were used instead of AI.

Special Interest Intangible Harm

An assessment of whether a special interest intangible harm occurred. This assessment does not consider the context of the intangible harm, if an AI was involved, or if there is characterizable class or subgroup of harmed entities. It is also not assessing if an intangible harm occurred. It is only asking if a special interest intangible harm occurred.
 

yes

Date of Incident Year

The year in which the incident occurred. If there are multiple harms or occurrences of the incident, list the earliest. If a precise date is unavailable, but the available sources provide a basis for estimating the year, estimate. Otherwise, leave blank. Enter in the format of YYYY
 

2021

Classifications de taxonomie MIT

Machine-Classified
Détails de la taxonomie

Risk Subdomain

A further 23 subdomains create an accessible and understandable classification of hazards and harms associated with AI
 

7.3. Lack of capability or robustness

Risk Domain

The Domain Taxonomy of AI Risks classifies risks into seven AI risk domains: (1) Discrimination & toxicity, (2) Privacy & security, (3) Misinformation, (4) Malicious actors & misuse, (5) Human-computer interaction, (6) Socioeconomic & environmental harms, and (7) AI system safety, failures & limitations.
 
  1. AI system safety, failures, and limitations

Entity

Which, if any, entity is presented as the main cause of the risk
 

AI

Timing

The stage in the AI lifecycle at which the risk is presented as occurring
 

Post-deployment

Intent

Whether the risk is presented as occurring as an expected or unexpected outcome from pursuing a goal
 

Unintentional

Rapports d'incidents

Chronologie du rapport

Incident OccurrenceComment les services sociaux français créent une "robo-dette"
Comment les services sociaux français créent une "robo-dette"

Comment les services sociaux français créent une "robo-dette"

algorithmwatch.org

Comment les services sociaux français créent une "robo-dette"
algorithmwatch.org · 2021
Traduit par IA

Je vis seul et, comme beaucoup de ma génération, je fais partie de la précarité. A ce titre, je perçois plusieurs avantages sociaux. Le bureau d'aide sociale paie une partie de mon loyer et me verse une allocation mensuelle, qui s'élève à e…

Variantes

Une "Variante" est un incident qui partage les mêmes facteurs de causalité, produit des dommages similaires et implique les mêmes systèmes intelligents qu'un incident d'IA connu. Plutôt que d'indexer les variantes comme des incidents entièrement distincts, nous listons les variations d'incidents sous le premier incident similaire soumis à la base de données. Contrairement aux autres types de soumission à la base de données des incidents, les variantes ne sont pas tenues d'avoir des rapports en preuve externes à la base de données des incidents. En savoir plus sur le document de recherche.

Incidents similaires

Par similarité textuelle

Did our AI mess up? Flag the unrelated incidents

Northpointe Risk Models

Machine Bias - ProPublica

May 2016 · 15 rapports
Employee Automatically Terminated by Computer Program

The man who was fired by a machine

Oct 2014 · 20 rapports
COMPAS Algorithm Performs Poorly in Crime Recidivism Prediction

A Popular Algorithm Is No Better at Predicting Crimes Than Random People

May 2016 · 22 rapports
Incident précédentProchain incident

Incidents similaires

Par similarité textuelle

Did our AI mess up? Flag the unrelated incidents

Northpointe Risk Models

Machine Bias - ProPublica

May 2016 · 15 rapports
Employee Automatically Terminated by Computer Program

The man who was fired by a machine

Oct 2014 · 20 rapports
COMPAS Algorithm Performs Poorly in Crime Recidivism Prediction

A Popular Algorithm Is No Better at Predicting Crimes Than Random People

May 2016 · 22 rapports

Recherche

  • Définition d'un « incident d'IA »
  • Définir une « réponse aux incidents d'IA »
  • Feuille de route de la base de données
  • Travaux connexes
  • Télécharger la base de données complète

Projet et communauté

  • À propos de
  • Contacter et suivre
  • Applications et résumés
  • Guide de l'éditeur

Incidents

  • Tous les incidents sous forme de liste
  • Incidents signalés
  • File d'attente de soumission
  • Affichage des classifications
  • Taxonomies

2023 - AI Incident Database

  • Conditions d'utilisation
  • Politique de confidentialité
  • Open twitterOpen githubOpen rssOpen facebookOpen linkedin
  • f28fa7c