Skip to Content
logologo
AI Incident Database
Open TwitterOpen RSS FeedOpen FacebookOpen LinkedInOpen GitHub
Open Menu
Descubrir
Enviar
  • Bienvenido a la AIID
  • Descubrir Incidentes
  • Vista espacial
  • Vista Tabular
  • Vista de lista
  • Entidades
  • Taxonomías
  • Enviar Informes de Incidentes
  • Ranking de Reportadores
  • Blog
  • Resumen de noticias de IA
  • Control de Riesgos
  • Incidente aleatorio
  • Registrarse
Colapsar
Descubrir
Enviar
  • Bienvenido a la AIID
  • Descubrir Incidentes
  • Vista espacial
  • Vista Tabular
  • Vista de lista
  • Entidades
  • Taxonomías
  • Enviar Informes de Incidentes
  • Ranking de Reportadores
  • Blog
  • Resumen de noticias de IA
  • Control de Riesgos
  • Incidente aleatorio
  • Registrarse
Colapsar

Incidente 660: Investigation Reports Unauthorized Deepfake Pornography Harms Thousands of Celebrities

Descripción: A Channel 4 News investigation alleges that nearly 4,000 celebrities globally, including 255 British figures, were victims of deepfake pornography. Faces were superimposed onto explicit content using AI, with the top deepfake sites garnering 100 million views in three months, according to their findings.

Herramientas

Nuevo InformeNuevo InformeNueva RespuestaNueva RespuestaDescubrirDescubrirVer HistorialVer Historial

Entidades

Ver todas las entidades
Alleged: Unknown deepfake technology developers developed an AI system deployed by Deepfake website operators, which harmed celebrities , British public figures y Cathy Newman.

Estadísticas de incidentes

ID
660
Cantidad de informes
1
Fecha del Incidente
2024-03-21
Editores
Applied Taxonomies
MIT

Clasificaciones de la Taxonomía MIT

Machine-Classified
Detalles de la Taxonomía

Risk Subdomain

A further 23 subdomains create an accessible and understandable classification of hazards and harms associated with AI
 

4.3. Fraud, scams, and targeted manipulation

Risk Domain

The Domain Taxonomy of AI Risks classifies risks into seven AI risk domains: (1) Discrimination & toxicity, (2) Privacy & security, (3) Misinformation, (4) Malicious actors & misuse, (5) Human-computer interaction, (6) Socioeconomic & environmental harms, and (7) AI system safety, failures & limitations.
 
  1. Malicious Actors & Misuse

Entity

Which, if any, entity is presented as the main cause of the risk
 

Human

Timing

The stage in the AI lifecycle at which the risk is presented as occurring
 

Post-deployment

Intent

Whether the risk is presented as occurring as an expected or unexpected outcome from pursuing a goal
 

Intentional

Informes del Incidente

Cronología de Informes

+1
translated-es-Nearly 4,000 celebrities found to be victims of deepfake pornography
translated-es-Nearly 4,000 celebrities found to be victims of deepfake pornography

translated-es-Nearly 4,000 celebrities found to be victims of deepfake pornography

theguardian.com

translated-es-Nearly 4,000 celebrities found to be victims of deepfake pornography
theguardian.com · 2024
Traducido por IA

translated-es-More than 250 British celebrities are among the thousands of famous people who are victims of deepfake pornography, an investigation has found.

A Channel 4 News analysis of the five most visited deepfake websites found almost …

Variantes

Una "Variante" es un incidente que comparte los mismos factores causales, produce daños similares e involucra los mismos sistemas inteligentes que un incidente de IA conocido. En lugar de indexar las variantes como incidentes completamente separados, enumeramos las variaciones de los incidentes bajo el primer incidente similar enviado a la base de datos. A diferencia de otros tipos de envío a la base de datos de incidentes, no se requiere que las variantes tengan informes como evidencia externa a la base de datos de incidentes. Obtenga más información del trabajo de investigación.

Incidentes Similares

Por similitud de texto

Did our AI mess up? Flag the unrelated incidents

Opaque Fraud Detection Algorithm by the UK’s Department of Work and Pensions Allegedly Discriminated against People with Disabilities

DWP urged to reveal algorithm that ‘targets’ disabled for benefit fraud

Oct 2019 · 6 informes
Facial Recognition Trial Performed Poorly at Notting Hill Carnival

Don’t Believe the Algorithm

Aug 2017 · 4 informes
ETS Used Allegedly Flawed Voice Recognition Evidence to Accuse and Assess Scale of Cheating, Causing Thousands to be Deported from the UK

The English test that ruined thousands of lives

Jan 2014 · 1 informe
Incidente AnteriorSiguiente Incidente

Incidentes Similares

Por similitud de texto

Did our AI mess up? Flag the unrelated incidents

Opaque Fraud Detection Algorithm by the UK’s Department of Work and Pensions Allegedly Discriminated against People with Disabilities

DWP urged to reveal algorithm that ‘targets’ disabled for benefit fraud

Oct 2019 · 6 informes
Facial Recognition Trial Performed Poorly at Notting Hill Carnival

Don’t Believe the Algorithm

Aug 2017 · 4 informes
ETS Used Allegedly Flawed Voice Recognition Evidence to Accuse and Assess Scale of Cheating, Causing Thousands to be Deported from the UK

The English test that ruined thousands of lives

Jan 2014 · 1 informe

Investigación

  • Definición de un “Incidente de IA”
  • Definición de una “Respuesta a incidentes de IA”
  • Hoja de ruta de la base de datos
  • Trabajo relacionado
  • Descargar Base de Datos Completa

Proyecto y Comunidad

  • Acerca de
  • Contactar y Seguir
  • Aplicaciones y resúmenes
  • Guía del editor

Incidencias

  • Todos los incidentes en forma de lista
  • Incidentes marcados
  • Cola de envío
  • Vista de clasificaciones
  • Taxonomías

2023 - AI Incident Database

  • Condiciones de uso
  • Política de privacidad
  • Open twitterOpen githubOpen rssOpen facebookOpen linkedin
  • f28fa7c