Incidente 235: translated-es-Chinese Insurer Ping An Employed Facial Recognition to Determine Customers’ Untrustworthiness, Which Critics Alleged to Likely Make Errors and Discriminate
Descripción: translated-es-Customers’ untrustworthiness and unprofitability were reportedly determined by Ping An, a large insurance company in China, via facial-recognition measurements of micro-expressions and body-mass indices (BMI), which critics argue was likely to make mistakes, discriminate against certain ethnic groups, and undermine its own industry.
Entidades
Ver todas las entidadesPresunto: un sistema de IA desarrollado e implementado por Ping An, perjudicó a Ping An customers y Chinese minority groups.
Risk Subdomain
A further 23 subdomains create an accessible and understandable classification of hazards and harms associated with AI
1.1. Unfair discrimination and misrepresentation
Risk Domain
The Domain Taxonomy of AI Risks classifies risks into seven AI risk domains: (1) Discrimination & toxicity, (2) Privacy & security, (3) Misinformation, (4) Malicious actors & misuse, (5) Human-computer interaction, (6) Socioeconomic & environmental harms, and (7) AI system safety, failures & limitations.
- Discrimination and Toxicity
Entity
Which, if any, entity is presented as the main cause of the risk
Human
Timing
The stage in the AI lifecycle at which the risk is presented as occurring
Post-deployment
Intent
Whether the risk is presented as occurring as an expected or unexpected outcome from pursuing a goal
Intentional
Informes del Incidente
Cronología de Informes

La aseguradora más grande de China, Ping An, aparentemente comenzó a emplear inteligencia artificial para identificar a clientes poco confiables y no rentables. Ofrece un ejemplo escalofriante de cómo, si no tenemos cuidado, podría ser el f…
Variantes
Una "Variante" es un incidente de IA similar a un caso conocido—tiene los mismos causantes, daños y sistema de IA. En lugar de enumerarlo por separado, lo agrupamos bajo el primer incidente informado. A diferencia de otros incidentes, las variantes no necesitan haber sido informadas fuera de la AIID. Obtenga más información del trabajo de investigación.
¿Has visto algo similar?