Skip to Content
logologo
AI Incident Database
Open TwitterOpen RSS FeedOpen FacebookOpen LinkedInOpen GitHub
Open Menu
Discover
Submit
  • Welcome to the AIID
  • Discover Incidents
  • Spatial View
  • Table View
  • List view
  • Entities
  • Taxonomies
  • Submit Incident Reports
  • Submission Leaderboard
  • Blog
  • AI News Digest
  • Risk Checklists
  • Random Incident
  • Sign Up
Collapse
Discover
Submit
  • Welcome to the AIID
  • Discover Incidents
  • Spatial View
  • Table View
  • List view
  • Entities
  • Taxonomies
  • Submit Incident Reports
  • Submission Leaderboard
  • Blog
  • AI News Digest
  • Risk Checklists
  • Random Incident
  • Sign Up
Collapse

Incident 87: UK passport photo checker shows bias against dark-skinned women

Description: UK passport photo checker shows bias against dark-skinned women.

Tools

New ReportNew ReportNew ResponseNew ResponseDiscoverDiscoverView HistoryView History

Entities

View all entities
Alleged: UK Home Office developed and deployed an AI system, which harmed dark-skinned people and dark-skinned women.

Incident Stats

Incident ID
87
Report Count
1
Incident Date
2020-10-07
Editors
Sean McGregor, Khoa Lam
Applied Taxonomies
CSETv0, CSETv1, GMF, MIT

CSETv1 Taxonomy Classifications

Taxonomy Details

Incident Number

The number of the incident in the AI Incident Database.
 

87

Notes (special interest intangible harm)

Input any notes that may help explain your answers.
 

The report focused on differential treatment to black women. However, it also showed differential treatment based individually on gender and lightness of skin tone.

Special Interest Intangible Harm

An assessment of whether a special interest intangible harm occurred. This assessment does not consider the context of the intangible harm, if an AI was involved, or if there is characterizable class or subgroup of harmed entities. It is also not assessing if an intangible harm occurred. It is only asking if a special interest intangible harm occurred.
 

yes

Date of Incident Year

The year in which the incident occurred. If there are multiple harms or occurrences of the incident, list the earliest. If a precise date is unavailable, but the available sources provide a basis for estimating the year, estimate. Otherwise, leave blank. Enter in the format of YYYY
 

2020

CSETv0 Taxonomy Classifications

Taxonomy Details

Problem Nature

Indicates which, if any, of the following types of AI failure describe the incident: "Specification," i.e. the system's behavior did not align with the true intentions of its designer, operator, etc; "Robustness," i.e. the system operated unsafely because of features or changes in its environment, or in the inputs the system received; "Assurance," i.e. the system could not be adequately monitored or controlled during operation.
 

Specification

Physical System

Where relevant, indicates whether the AI system(s) was embedded into or tightly associated with specific types of hardware.
 

Software only

Level of Autonomy

The degree to which the AI system(s) functions independently from human intervention. "High" means there is no human involved in the system action execution; "Medium" means the system generates a decision and a human oversees the resulting action; "low" means the system generates decision-support output and a human makes a decision and executes an action.
 

Medium

Nature of End User

"Expert" if users with special training or technical expertise were the ones meant to benefit from the AI system(s)’ operation; "Amateur" if the AI systems were primarily meant to benefit the general public or untrained users.
 

Amateur

Public Sector Deployment

"Yes" if the AI system(s) involved in the accident were being used by the public sector or for the administration of public goods (for example, public transportation). "No" if the system(s) were being used in the private sector or for commercial purposes (for example, a ride-sharing company), on the other.
 

Yes

Data Inputs

A brief description of the data that the AI system(s) used or were trained on.
 

Passport IDs

MIT Taxonomy Classifications

Machine-Classified
Taxonomy Details

Risk Subdomain

A further 23 subdomains create an accessible and understandable classification of hazards and harms associated with AI
 

1.3. Unequal performance across groups

Risk Domain

The Domain Taxonomy of AI Risks classifies risks into seven AI risk domains: (1) Discrimination & toxicity, (2) Privacy & security, (3) Misinformation, (4) Malicious actors & misuse, (5) Human-computer interaction, (6) Socioeconomic & environmental harms, and (7) AI system safety, failures & limitations.
 
  1. Discrimination and Toxicity

Entity

Which, if any, entity is presented as the main cause of the risk
 

AI

Timing

The stage in the AI lifecycle at which the risk is presented as occurring
 

Post-deployment

Intent

Whether the risk is presented as occurring as an expected or unexpected outcome from pursuing a goal
 

Unintentional

Incident Reports

Reports Timeline

+1
UK passport photo checker shows bias against dark-skinned women
UK passport photo checker shows bias against dark-skinned women

UK passport photo checker shows bias against dark-skinned women

bbc.co.uk

UK passport photo checker shows bias against dark-skinned women
bbc.co.uk · 2020

Women with darker skin are more than twice as likely to be told their photos fail UK passport rules when they submit them online than lighter-skinned men, according to a BBC investigation.

One black student said she was wrongly told her mou…

Variants

A "variant" is an incident that shares the same causative factors, produces similar harms, and involves the same intelligent systems as a known AI incident. Rather than index variants as entirely separate incidents, we list variations of incidents under the first similar incident submitted to the database. Unlike other submission types to the incident database, variants are not required to have reporting in evidence external to the Incident Database. Learn more from the research paper.

Similar Incidents

By textual similarity

Did our AI mess up? Flag the unrelated incidents

ETS Used Allegedly Flawed Voice Recognition Evidence to Accuse and Assess Scale of Cheating, Causing Thousands to be Deported from the UK

ETS Used Allegedly Flawed Voice Recognition Evidence to Accuse and Assess Scale of Cheating, Causing Thousands to be Deported from the UK

Jan 2014 · 1 report
Passport checker Detects Asian man's Eyes as Closed

Passport checker Detects Asian man's Eyes as Closed

Dec 2016 · 22 reports
Opaque Fraud Detection Algorithm by the UK’s Department of Work and Pensions Allegedly Discriminated against People with Disabilities

Opaque Fraud Detection Algorithm by the UK’s Department of Work and Pensions Allegedly Discriminated against People with Disabilities

Oct 2019 · 6 reports
Previous IncidentNext Incident

Similar Incidents

By textual similarity

Did our AI mess up? Flag the unrelated incidents

ETS Used Allegedly Flawed Voice Recognition Evidence to Accuse and Assess Scale of Cheating, Causing Thousands to be Deported from the UK

ETS Used Allegedly Flawed Voice Recognition Evidence to Accuse and Assess Scale of Cheating, Causing Thousands to be Deported from the UK

Jan 2014 · 1 report
Passport checker Detects Asian man's Eyes as Closed

Passport checker Detects Asian man's Eyes as Closed

Dec 2016 · 22 reports
Opaque Fraud Detection Algorithm by the UK’s Department of Work and Pensions Allegedly Discriminated against People with Disabilities

Opaque Fraud Detection Algorithm by the UK’s Department of Work and Pensions Allegedly Discriminated against People with Disabilities

Oct 2019 · 6 reports

Research

  • Defining an “AI Incident”
  • Defining an “AI Incident Response”
  • Database Roadmap
  • Related Work
  • Download Complete Database

Project and Community

  • About
  • Contact and Follow
  • Apps and Summaries
  • Editor’s Guide

Incidents

  • All Incidents in List Form
  • Flagged Incidents
  • Submission Queue
  • Classifications View
  • Taxonomies

2023 - AI Incident Database

  • Terms of use
  • Privacy Policy
  • Open twitterOpen githubOpen rssOpen facebookOpen linkedin
  • 30ebe76