Skip to Content
logologo
AI Incident Database
Open TwitterOpen RSS FeedOpen FacebookOpen LinkedInOpen GitHub
Open Menu
Discover
Submit
  • Welcome to the AIID
  • Discover Incidents
  • Spatial View
  • Table View
  • List view
  • Entities
  • Taxonomies
  • Submit Incident Reports
  • Submission Leaderboard
  • Blog
  • AI News Digest
  • Risk Checklists
  • Random Incident
  • Sign Up
Collapse
Discover
Submit
  • Welcome to the AIID
  • Discover Incidents
  • Spatial View
  • Table View
  • List view
  • Entities
  • Taxonomies
  • Submit Incident Reports
  • Submission Leaderboard
  • Blog
  • AI News Digest
  • Risk Checklists
  • Random Incident
  • Sign Up
Collapse

Incident 61: Overfit Kaggle Models Discouraged Data Science Competitors

Description: In the “The Nature Conservancy Fisheries Monitoring” competition on the data science competition website Kaggle, a number of competitors overfit their image classifier models to a poorly representative validation data set.

Tools

New ReportNew ReportNew ResponseNew ResponseDiscoverDiscoverView HistoryView History

Entities

View all entities
Alleged: Individual Kaggle Competitors developed and deployed an AI system, which harmed Individual Kaggle Competitors.

Incident Stats

Incident ID
61
Report Count
1
Incident Date
2017-05-01
Editors
Sean McGregor
Applied Taxonomies
CSETv0, CSETv1, GMF, MIT

CSETv1 Taxonomy Classifications

Taxonomy Details

Incident Number

The number of the incident in the AI Incident Database.
 

61

CSETv0 Taxonomy Classifications

Taxonomy Details

Problem Nature

Indicates which, if any, of the following types of AI failure describe the incident: "Specification," i.e. the system's behavior did not align with the true intentions of its designer, operator, etc; "Robustness," i.e. the system operated unsafely because of features or changes in its environment, or in the inputs the system received; "Assurance," i.e. the system could not be adequately monitored or controlled during operation.
 

Robustness

Physical System

Where relevant, indicates whether the AI system(s) was embedded into or tightly associated with specific types of hardware.
 

Software only

Level of Autonomy

The degree to which the AI system(s) functions independently from human intervention. "High" means there is no human involved in the system action execution; "Medium" means the system generates a decision and a human oversees the resulting action; "low" means the system generates decision-support output and a human makes a decision and executes an action.
 

Low

Nature of End User

"Expert" if users with special training or technical expertise were the ones meant to benefit from the AI system(s)’ operation; "Amateur" if the AI systems were primarily meant to benefit the general public or untrained users.
 

Expert

Public Sector Deployment

"Yes" if the AI system(s) involved in the accident were being used by the public sector or for the administration of public goods (for example, public transportation). "No" if the system(s) were being used in the private sector or for commercial purposes (for example, a ride-sharing company), on the other.
 

No

Data Inputs

A brief description of the data that the AI system(s) used or were trained on.
 

Images captured on fishing boats

MIT Taxonomy Classifications

Machine-Classified
Taxonomy Details

Risk Subdomain

A further 23 subdomains create an accessible and understandable classification of hazards and harms associated with AI
 

7.3. Lack of capability or robustness

Risk Domain

The Domain Taxonomy of AI Risks classifies risks into seven AI risk domains: (1) Discrimination & toxicity, (2) Privacy & security, (3) Misinformation, (4) Malicious actors & misuse, (5) Human-computer interaction, (6) Socioeconomic & environmental harms, and (7) AI system safety, failures & limitations.
 
  1. AI system safety, failures, and limitations

Entity

Which, if any, entity is presented as the main cause of the risk
 

AI

Timing

The stage in the AI lifecycle at which the risk is presented as occurring
 

Post-deployment

Intent

Whether the risk is presented as occurring as an expected or unexpected outcome from pursuing a goal
 

Unintentional

Incident Reports

Reports Timeline

+1
What I’ve learned from Kaggle’s fisheries competition
What I’ve learned from Kaggle’s fisheries competition

What I’ve learned from Kaggle’s fisheries competition

medium.com

What I’ve learned from Kaggle’s fisheries competition
medium.com · 2017

What I’ve learned from Kaggle’s fisheries competition

Gidi Shperber Blocked Unblock Follow Following May 1, 2017

TLDR:

Me and my Kaggle partner, have recently participated in “The Nature Conservancy Fisheries Monitoring” (hereby: “fisheries…

Variants

A "variant" is an incident that shares the same causative factors, produces similar harms, and involves the same intelligent systems as a known AI incident. Rather than index variants as entirely separate incidents, we list variations of incidents under the first similar incident submitted to the database. Unlike other submission types to the incident database, variants are not required to have reporting in evidence external to the Incident Database. Learn more from the research paper.

Similar Incidents

By textual similarity

Did our AI mess up? Flag the unrelated incidents

The DAO Hack

The DAO Hack

Jun 2016 · 24 reports
All Image Captions Produced are Violent

All Image Captions Produced are Violent

Apr 2018 · 28 reports
High-Toxicity Assessed on Text Involving Women and Minority Groups

High-Toxicity Assessed on Text Involving Women and Minority Groups

Feb 2017 · 9 reports
Previous IncidentNext Incident

Similar Incidents

By textual similarity

Did our AI mess up? Flag the unrelated incidents

The DAO Hack

The DAO Hack

Jun 2016 · 24 reports
All Image Captions Produced are Violent

All Image Captions Produced are Violent

Apr 2018 · 28 reports
High-Toxicity Assessed on Text Involving Women and Minority Groups

High-Toxicity Assessed on Text Involving Women and Minority Groups

Feb 2017 · 9 reports

Research

  • Defining an “AI Incident”
  • Defining an “AI Incident Response”
  • Database Roadmap
  • Related Work
  • Download Complete Database

Project and Community

  • About
  • Contact and Follow
  • Apps and Summaries
  • Editor’s Guide

Incidents

  • All Incidents in List Form
  • Flagged Incidents
  • Submission Queue
  • Classifications View
  • Taxonomies

2023 - AI Incident Database

  • Terms of use
  • Privacy Policy
  • Open twitterOpen githubOpen rssOpen facebookOpen linkedin
  • 30ebe76