Skip to Content
logologo
AI Incident Database
Open TwitterOpen RSS FeedOpen FacebookOpen LinkedInOpen GitHub
Open Menu
Discover
Submit
  • Welcome to the AIID
  • Discover Incidents
  • Spatial View
  • Table View
  • List view
  • Entities
  • Taxonomies
  • Submit Incident Reports
  • Submission Leaderboard
  • Blog
  • AI News Digest
  • Risk Checklists
  • Random Incident
  • Sign Up
Collapse
Discover
Submit
  • Welcome to the AIID
  • Discover Incidents
  • Spatial View
  • Table View
  • List view
  • Entities
  • Taxonomies
  • Submit Incident Reports
  • Submission Leaderboard
  • Blog
  • AI News Digest
  • Risk Checklists
  • Random Incident
  • Sign Up
Collapse

Incident 301: Teenager at Broward College Allegedly Wrongfully Accused of Cheating via Remote Proctoring

Description: Broward College’s use of remote proctoring system and reliance on its flagging algorithm allegedly led to a wrongful accusation of academic dishonesty in a biology exam of a Florida teenager.

Tools

New ReportNew ReportNew ResponseNew ResponseDiscoverDiscoverView HistoryView History

Entities

View all entities
Alleged: Honorlock developed an AI system deployed by Broward College, which harmed unnamed Florida teenager.

Incident Stats

Incident ID
301
Report Count
1
Incident Date
2022-02-15
Editors
Khoa Lam
Applied Taxonomies
MIT

MIT Taxonomy Classifications

Machine-Classified
Taxonomy Details

Risk Subdomain

A further 23 subdomains create an accessible and understandable classification of hazards and harms associated with AI
 

1.1. Unfair discrimination and misrepresentation

Risk Domain

The Domain Taxonomy of AI Risks classifies risks into seven AI risk domains: (1) Discrimination & toxicity, (2) Privacy & security, (3) Misinformation, (4) Malicious actors & misuse, (5) Human-computer interaction, (6) Socioeconomic & environmental harms, and (7) AI system safety, failures & limitations.
 
  1. Discrimination and Toxicity

Entity

Which, if any, entity is presented as the main cause of the risk
 

AI

Timing

The stage in the AI lifecycle at which the risk is presented as occurring
 

Post-deployment

Intent

Whether the risk is presented as occurring as an expected or unexpected outcome from pursuing a goal
 

Unintentional

Incident Reports

Reports Timeline

Incident OccurrenceAccused of Cheating by an Algorithm, and a Professor She Had Never Met
Accused of Cheating by an Algorithm, and a Professor She Had Never Met

Accused of Cheating by an Algorithm, and a Professor She Had Never Met

nytimes.com

Accused of Cheating by an Algorithm, and a Professor She Had Never Met
nytimes.com · 2022

A Florida teenager taking a biology class at a community college got an upsetting note this year. A start-up called Honorlock had flagged her as acting suspiciously during an exam in February. She was, she said in an email to The New York T…

Variants

A "variant" is an incident that shares the same causative factors, produces similar harms, and involves the same intelligent systems as a known AI incident. Rather than index variants as entirely separate incidents, we list variations of incidents under the first similar incident submitted to the database. Unlike other submission types to the incident database, variants are not required to have reporting in evidence external to the Incident Database. Learn more from the research paper.
Previous IncidentNext Incident

Research

  • Defining an “AI Incident”
  • Defining an “AI Incident Response”
  • Database Roadmap
  • Related Work
  • Download Complete Database

Project and Community

  • About
  • Contact and Follow
  • Apps and Summaries
  • Editor’s Guide

Incidents

  • All Incidents in List Form
  • Flagged Incidents
  • Submission Queue
  • Classifications View
  • Taxonomies

2023 - AI Incident Database

  • Terms of use
  • Privacy Policy
  • Open twitterOpen githubOpen rssOpen facebookOpen linkedin
  • c3516ee